本文共 4065 字,大约阅读时间需要 13 分钟。
LangChain框架与GPT-4插件:提升LLM应用能力
LangChain框架作为LLM开发的核心工具,提供了完整的功能模块,极大地提升了语言模型的应用潜力。其独特的设计理念和灵活的扩展能力,使得开发者能够轻松构建复杂的应用场景。本节将深入分析LangChain的核心功能,以及其与GPT-4插件的区别与联系。
LangChain框架专为LLM驱动型应用开发而设计,集成了多种核心模块,为开发者提供了灵活的工具链。以下是其关键模块的功能概述:
通过LangChain实现文本补全任务:
from langchain.chat_models import ChatOpenAIfrom langchain import PromptTemplatetemplate = """Question: {question}Let's think step by step.Answer: """prompt = PromptTemplate(template=template, input_variables=["question"])llm = ChatOpenAI(model_name="gpt-4")llm_chain = LLMChain(prompt=prompt, llm=llm)question = """What is the population of the capital of the country where the Olympic Games were held in 2016?"""response = llm_chain.run(question) 输出示例:
Step 1: Identify the country where the Olympic Games were held in 2016. Answer: The 2016 Olympic Games were held in Brazil. Step 2: Identify the capital of Brazil. Answer: The capital of Brazil is Brasília. Step 3: Find the population of Brasília. Answer: As of 2021, the estimated population of Brasília is around 3.1 million. So, the population of the capital of the country where the Olympic Games were held in 2016 is around 3.1 million. Note that this is an estimate and may vary slightly.
LangChain通过PromptTemplate实现了灵活的提示词管理,使模型能够以可复制的方式生成输入。
LangChain的智能体模块通过工具执行复杂任务。以下是智能体工作流程:
示例:计算奥运会举办国首都人口平方根
from langchain.agents import load_tools, initialize_agentfrom langchain import ChatOpenAIllm = ChatOpenAI(model_name="gpt-3.5-turbo")tools = load_tools(["wikipedia", "llm-math"], llm=llm)agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)question = """What is the square root of the population of the capital of the country where the Olympic Games were held in 2016?"""response = agent.run(question)
输出示例:
Thought: I need to find the country where the Olympic Games were held in 2016. Action: WikipediaAction Input: "2016 Summer Olympics" Observation: Page: 2016 Summer Olympics[...]
Thought: I need to search for the capital city of Brazil. Action: WikipediaAction Input: "Capital of Brazil" Observation: Page: Capitals of Brazil[...]
Thought: I have found the capital city of Brazil, which is Brasilia. Now I need to find the population of Brasilia. Action: WikipediaAction Input: "Population of Brasilia" Observation: Page: Brasilia[...]
Thought: I have found the population of Brasilia, but I need to calculate the square root of that population. Action: CalculatorAction Input: Square root of the population of Brasilia (population: found in previous observation) Observation: Answer: 1587.051038876822
最终答案:The square root of the population of the capital of the country where the Olympic Games were held in 2016 is approximately 1587.
GPT-4插件通过OpenAPI协议与LLM交互,提供实时信息检索和复杂任务执行。其核心特点包括:
示例插件清单:
{ "schema_version": "v1", "name_for_human": "TODO Plugin", "name_for_model": "todo", "description_for_human": "Plugin for managing a TODO list. You can add, remove and view your TODOs.", "description_for_model": "Plugin for managing a TODO list. You can add, remove and view your TODOs.", "auth": { "type": "none" }, "api": { "type": "openapi", "url": "http://localhost:3333/openapi.yaml", "is_user_authenticated": false }, "logo_url": "http://localhost:3333/logo.png", "contact_email": "support@thecompany.com", "legal_info_url": "http://thecompany-url/legal"} LangChain框架通过灵活的功能模块和强大工具支持,成为LLM开发的重要框架。其与GPT-4插件的结合,进一步扩展了LLM的应用场景。无论是文本生成、智能体决策,还是复杂任务执行,LangChain都能为开发者提供高效的解决方案。
未来,随着技术的不断进步,LangChain将继续引领LLM应用的新时代。开发者可以结合自身需求,充分发挥LangChain的潜力,打造更智能、更实用的AI应用。
转载地址:http://xerfk.baihongyu.com/