博客
关于我
ChatGPT大模型极简应用开发-CH5-使用 LangChain 框架和插件增强 LLM 的功能
阅读量:799 次
发布时间:2023-04-15

本文共 4065 字,大约阅读时间需要 13 分钟。

LangChain框架与GPT-4插件:提升LLM应用能力

LangChain框架作为LLM开发的核心工具,提供了完整的功能模块,极大地提升了语言模型的应用潜力。其独特的设计理念和灵活的扩展能力,使得开发者能够轻松构建复杂的应用场景。本节将深入分析LangChain的核心功能,以及其与GPT-4插件的区别与联系。

5.1 LangChain框架概述

LangChain框架专为LLM驱动型应用开发而设计,集成了多种核心模块,为开发者提供了灵活的工具链。以下是其关键模块的功能概述:

  • 模型接口(Models):LangChain提供标准化接口,支持多种LLM供应商,包括OpenAI、Hugging Face、Cohere等。
  • 提示词管理(Prompts):提供丰富的工具,帮助构建和管理模型输入。
  • 检索索引(Indexes):通过Retrieval模块,将LLM与数据集成,提升检索效率。
  • 链调用(Chains):创建多模型或提示词的调用序列,支持复杂任务执行。
  • 智能体(Agents):引入迭代式决策机制,支持工具集成和上下文维护。
  • 记忆机制(Memory):为链和智能体提供状态维护,支持长期记忆应用。
  • 5.2 动态提示词示例

    通过LangChain实现文本补全任务:

    from langchain.chat_models import ChatOpenAI
    from langchain import PromptTemplate
    template = """Question: {question}
    Let's think step by step.
    Answer: """
    prompt = PromptTemplate(template=template, input_variables=["question"])
    llm = ChatOpenAI(model_name="gpt-4")
    llm_chain = LLMChain(prompt=prompt, llm=llm)
    question = """What is the population of the capital of the country where the Olympic Games were held in 2016?"""
    response = llm_chain.run(question)

    输出示例:

    Step 1: Identify the country where the Olympic Games were held in 2016. Answer: The 2016 Olympic Games were held in Brazil. Step 2: Identify the capital of Brazil. Answer: The capital of Brazil is Brasília. Step 3: Find the population of Brasília. Answer: As of 2021, the estimated population of Brasília is around 3.1 million. So, the population of the capital of the country where the Olympic Games were held in 2016 is around 3.1 million. Note that this is an estimate and may vary slightly.

    LangChain通过PromptTemplate实现了灵活的提示词管理,使模型能够以可复制的方式生成输入。

    5.3 智能体与工具集成

    LangChain的智能体模块通过工具执行复杂任务。以下是智能体工作流程:

  • 接收用户输入
  • 选择适当工具
  • 调用工具获取输出
  • 更新上下文
  • 重复直到完成任务
  • 示例:计算奥运会举办国首都人口平方根

    from langchain.agents import load_tools, initialize_agent
    from langchain import ChatOpenAI
    llm = ChatOpenAI(model_name="gpt-3.5-turbo")
    tools = load_tools(["wikipedia", "llm-math"], llm=llm)
    agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
    question = """What is the square root of the population of the capital of the country where the Olympic Games were held in 2016?"""
    response = agent.run(question)

    输出示例:

    Thought: I need to find the country where the Olympic Games were held in 2016. Action: WikipediaAction Input: "2016 Summer Olympics" Observation: Page: 2016 Summer Olympics[...]

    Thought: I need to search for the capital city of Brazil. Action: WikipediaAction Input: "Capital of Brazil" Observation: Page: Capitals of Brazil[...]

    Thought: I have found the capital city of Brazil, which is Brasilia. Now I need to find the population of Brasilia. Action: WikipediaAction Input: "Population of Brasilia" Observation: Page: Brasilia[...]

    Thought: I have found the population of Brasilia, but I need to calculate the square root of that population. Action: CalculatorAction Input: Square root of the population of Brasilia (population: found in previous observation) Observation: Answer: 1587.051038876822

    最终答案:The square root of the population of the capital of the country where the Olympic Games were held in 2016 is approximately 1587.

    5.4 GPT-4插件对比

    GPT-4插件通过OpenAPI协议与LLM交互,提供实时信息检索和复杂任务执行。其核心特点包括:

  • 插件清单(ai-plugin.json):定义插件描述和API接口。
  • OpenAPI规范(openapi.yaml):详细描述API接口和功能。
  • 插件部署:通过迭代方法逐步添加功能。
  • 示例插件清单:

    {
    "schema_version": "v1",
    "name_for_human": "TODO Plugin",
    "name_for_model": "todo",
    "description_for_human": "Plugin for managing a TODO list. You can add, remove and view your TODOs.",
    "description_for_model": "Plugin for managing a TODO list. You can add, remove and view your TODOs.",
    "auth": {
    "type": "none"
    },
    "api": {
    "type": "openapi",
    "url": "http://localhost:3333/openapi.yaml",
    "is_user_authenticated": false
    },
    "logo_url": "http://localhost:3333/logo.png",
    "contact_email": "support@thecompany.com",
    "legal_info_url": "http://thecompany-url/legal"
    }

    5.5 小结

    LangChain框架通过灵活的功能模块和强大工具支持,成为LLM开发的重要框架。其与GPT-4插件的结合,进一步扩展了LLM的应用场景。无论是文本生成、智能体决策,还是复杂任务执行,LangChain都能为开发者提供高效的解决方案。

    未来,随着技术的不断进步,LangChain将继续引领LLM应用的新时代。开发者可以结合自身需求,充分发挥LangChain的潜力,打造更智能、更实用的AI应用。

    转载地址:http://xerfk.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现查找链表的中间元素算法(附完整源码)
    查看>>
    Objective-C实现样条插值(附完整源码)
    查看>>
    Objective-C实现根据cpu和磁盘序列号生成注册码( 附完整源码)
    查看>>
    Objective-C实现格雷码序列算法(附完整源码)
    查看>>
    Objective-C实现桥接模式(附完整源码)
    查看>>
    Objective-C实现检查一个数字是否可以被另一个数字整除算法(附完整源码)
    查看>>
    Objective-C实现检查一年是否是闰年算法 (附完整源码)
    查看>>
    Objective-C实现检查三个点在 3D 中是否共线算法(附完整源码)
    查看>>
    Objective-C实现检查字符串是否包含字母表中所有字母的算法(附完整源码)
    查看>>
    Objective-C实现检查字符是否为字母算法(附完整源码)
    查看>>
    Objective-C实现检查数字是否为偶数算法(附完整源码)
    查看>>
    Objective-C实现检查数字是否为奇数算法(附完整源码)
    查看>>
    Objective-C实现检查给定图中是否存在循环算法(附完整源码)
    查看>>
    Objective-C实现检查给定字符串是否在camelCase中算法(附完整源码)
    查看>>
    Objective-C实现检查给定的字符串是否在kebabcase中算法(附完整源码)
    查看>>
    Objective-C实现检查给定的字符串是否在snake_case中算法(附完整源码)
    查看>>
    Objective-C实现检查给定的字符串是否是扁平(全部小写)的算法(附完整源码)
    查看>>